Blind Source Separation Based on Fast-convergence Algorithm Using Ica and Array Signal Processing
نویسندگان
چکیده
ABSTRACT We propose a new algorithm for blind source separation (BSS), in which independent component analysis (ICA) and beamforming are combined to resolve the low-convergence problem through optimization in ICA. The proposed method consists of the following three parts: (1) frequency-domain ICA with direction-of-arrival (DOA) estimation, (2) null beamforming based on the estimated DOA, and (3) integration of (1) and (2) based on the algorithm diversity in both iteration and frequency domain. The inverse of the mixing matrix obtained by ICA is temporally substituted by the matrix based on null beamforming through iterative optimization, and the temporal alternation between ICA and beamforming can realize fastand high-convergence optimization. The results of the signal separation experiments reveal that the signal separation performance of the proposed algorithm is superior to that of the conventional ICA-based BSS method, even under reverberant conditions.
منابع مشابه
Workshop on Statistical Signal and Array Processing A BATCH SUBSPACE ICA ALGORITHM
For the blind separation of sources (BSS) problem (or the independent component analysis (ICA)), it has been shown in many situations, that the adaptive subspace algorithms are very slow and need an important computation e orts. In a previous publication, we proposed a modi ed subspace algorithm for stationary signals. But that algorithm was limited to stationary signals and its convergence was...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملBlind source separation for speech based on fast-convergence algorithm with ICA and beamforming
We propose a new algorithm for blind source separation (BSS), in which independent component analysis (ICA) and beamforming are combined to resolve the low-convergence problem through optimization in ICA. The proposed method consists of the following three parts: (1) frequency-domain ICA with direction-of-arrival (DOA) estimation, (2) null beamforming based on the estimated DOA, and (3) integra...
متن کاملBlind source separation based on subband ICA and beamforming
This paper describes a new blind source separation (BSS) method on microphone array using the subband independent component analysis (ICA) and beamforming. The proposed array system consists of the following three sections: (1) subband-ICA-based BSS section, (2) null beamforming section, and (3) integration of (1) and (2) based on the algorithm diversity. Using this technique, we can resolve th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001